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Abstract

Infant language learners are faced with the difficult inductive problem of determining how new

words map to novel or known objects in their environment. Bayesian inference models have been

successful at using the sparse information available in natural child-directed speech to build candi-

date lexicons and infer speakers’ referential intentions. We begin by asking how a Bayesian model

optimized for monolingual input (the Intentional Model; Frank et al., 2009) generalizes to new

monolingual or bilingual corpora and find that, especially in the case of the bilingual input, the model

shows a significant decrease in performance. In the next experiment, we propose the ME Model, a

modified Bayesian model, which approximates infants’ mutual exclusivity bias to support the differ-

ential demands of monolingual and bilingual learning situations. The extended model is assessed

using the same corpora of real child-directed speech, showing that its performance is more robust

against varying input and less dependent than the Intentional Model on optimization of its parsimony

parameter. We argue that both monolingual and bilingual demands on word learning are important

considerations for a computational model, as they can yield significantly different results than when

only one such context is considered.
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1. Introduction

Language learners face the difficult inferential problem of mapping words they hear to

the referents in their environment intended by a speaker. Developmental research in the

last two decades has identified a number of potential constraints and biases that children

may bring to bear on language learning to mitigate this problem, and subsequently many
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computational simulations have been proposed to describe word learning. However, many

early models were limited to learning from highly constrained input or, conversely, allow-

ing many-to-many mappings in models’ learned lexicons (i.e., the set of mappings

between word forms and referents inferred from the training data). Parsimony and ecolog-

ically relevant learning have therefore gained increasing importance for word learning

models, and several models are now making progress toward producing highly plausible

predictions based on naturalistic training materials (Fazly et al., 2010; Frank, Goodman,

& Tenenbaum, 2009; McMurray et al., 2012).

One such example, the Intentional Model of Frank et al. (2009) offered a major

improvement in the simulation of infant word learning through Bayesian inference (see

Xu & Tenenbaum, 2007b, for a review of Bayesian models in word learning). The Inten-

tional Model uses a conservative assumption for assigning prior probabilities to lexicons

based on parsimony; that is, learning fewer mappings is generally better than learning

more. This assumption may reflect the child learner’s own bias toward parsimony in word

learning. The Intentional Model’s success over alternate models of word learning suggests

that parsimony is indeed a key constraint. However, the Intentional Model’s specific con-

straint on the total size of a lexicon could be problematic for learning from bilingual

input wherein approximately twice as many words exist for the same set of objects. To

date, the Intentional Model has been tested only with monolingual corpora of child-direc-

ted speech, leaving open the question of whether it would provide reasonable predictions

in a bilingual language environment. In this paper, we examine the performance of the

Intentional Model when presented with bilingual input and propose a modestly revised

approach to parsimony that, we argue, better accommodates new learning contexts, such

as in simultaneous bilingual language acquisition.

1.1. Parsimony in word learning

Confronted with a multiword utterance in a natural environment with many objects,

how does a learner locate the intended referent and map it to the correct word? This has

been named the “word-to-world” mapping problem in the literature (the classical “inde-

terminacy problem” as per Quine, 1960; but also see Markman, 1990, 1994; Smith & Yu,

2008; among others). Developmental researchers have proposed a number of heuristics

that a child may be using to reduce the dimensionality of the word-by-object mapping

problem, thereby making word learning a psychologically tractable task that both children

(Liitschwager & Markman, 1994) and adults (Yurovsky & Yu, 2008) can solve quickly

and robustly in evidence-poor natural learning scenarios.

Mutual exclusivity is one such constraining assumption that both provides important

clues for word–object mapping but poses a serious difficulty for children in many natural

language environments. The mutual exclusivity constraint stipulates that if the name of

an object is already known, a new name should be applied to a novel object instead of

the already named object. Frank et al.’s (2009) Intentional Model exhibits a mutual

exclusivity preference resulting from its far more general parsimony constraint (discussed

in detail below). Thus, this constraint for mutual exclusivity appears to be important in
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word learning, and it has plausible analog in a successful word learning architecture.

However, this success might be partly attributed to an implicit assumption of many word

learning studies and models: monolingualism.

Monolingual children confront violations of the mutual exclusivity constraint to a lim-

ited degree with synonymy, but bilingual children are forced to violate mutual exclusivity

for every referent they learn to name in both languages (Au & Glusman, 1990; Davidson

& Tell, 2005). Empirical studies of child bilingualism have indicated that bilingual chil-

dren relax the mutual exclusivity criterion (Byers-Heinlein & Werker, 2009; Houston-

Price, Caloghiris, & Raviglione, 2010) once they reach a metalinguistic awareness that

multiple names (translation equivalents) must be assigned to the same object (Byers-Hein-

lein & Werker, 2013).

Bilingualism is a norm rather than exception among the world’s language users

(Grosjean, 2010), but computational models of word learning have made limited pro-

gress in ecologically plausible bilingual word learning. Analogous hierarchical learning

problems, wherein the very assumptions that support learning must be periodically ree-

valuated for their fitness to the data, are being addressed through the Bayesian approach

(Qian, Jaeger, & Aslin, 2012). The next crucial step for word learning models, there-

fore, is to understand how the state of the art in monolingual learning generalizes to

bilingualism.

1.2. The Intentional Model

Bayesian models have emerged in the past decade as an important class of word learn-

ing models that incorporate some basic constraints in the model’s learning procedure.

Bayesian models have significantly improved the psychological plausibility of early lan-

guage acquisition and replicated several of the benchmarks set out by Xu and Tenenbaum

(2007a) as requisite features for simulations of word learning. Indeed, there is accumulat-

ing behavioral evidence that inductive problem solving of the sort faced by children in

word learning is Bayesian in character (Bonawitz & Griffiths, 2010; Qian et al., 2012;

Xu & Tenenbaum, 2007a,b). Bayesian word learning models rely on relatively simple sta-

tistical biases to evaluate lexicons prior to observing data (the prior probability) and in

comparison to the observed data (the likelihood). Each possible lexicon is treated as a

competing hypothesis, compared for its fitness to the observed data, and assigned poste-

rior probability or a quantification of the model’s belief in that particular hypothesis (lexi-

con) given the new observations (Perfors, Tenenbaum, Griffiths, & Xu, 2011). By this

method, no hypothesis is technically eliminated, but decreasing probabilities are assigned

to the more unlikely hypotheses.

This relationship can be expressed mathematically using Bayes’ theorem:

pðHijDÞ ¼ pðDjHiÞpðHiÞ
RjpðDjHjÞpðHjÞ ð1Þ
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Here p(D|Hi), or the likelihood probability (described in greater detail in Experiment

1), represents the probability of observing these data given the hypothesis Hi while p(Hi)

is the prior probability of hypothesis i. The better the fit to the observed data and the

more likely (a priori) the hypothesis, the higher the posterior probability p(Hi|D) that

hypothesis i is the correct one. The denominator in the above expression is a normaliza-

tion factor, ensuring that the posterior probabilities for all hypotheses sum to one. While

this expression represents an evaluation of the hypotheses, the manner in which the likeli-

hood and prior are calculated, as well as how a specific lexicon is generated and chosen

from the hypothesis space in the first place, is model-specific.

Given the considerable power and success of the Bayesian Intentional Model (Frank

et al., 2009) compared to other computational models of word learning, we focus in this

study on the Intentional Model as our initial basis for simulating children’s word learning

from natural language corpora. Although the Intentional Model has not directly incorpo-

rated mutual exclusivity as a learning bias or mechanism, the model successfully repro-

duces a strong preference for mutual exclusivity when confronted with the decision to

associate a new word with either an object whose name is known or a novel object

(Frank et al., 2009). Parsimony in the total number of mappings is implemented in this

model by biasing the prior probability estimates against larger lexicons. In effect, this

bias discourages adding new word–object pairs to the lexicon unless they significantly

improve the lexicon’s fitness to the data (see Frank et al., 2009, for more details).

While achieving plausible lexicons and demonstrating a mutual exclusivity bias under

a rather small set of constraints is an important step for computational models of child

language acquisition, the success of the Intentional Model in this regard may partly hinge

on the use of monolingual training data, which has fewer violations of parsimony

assumptions than analogous bilingual or multilingual input. In other words, can the model

learn a lexicon containing two words for every object? This is the challenge that every

bilingual child faces. Frank et al. (2009) demonstrate that in some circumstances, the

Intentional Model succeeds in learning synonymous relationships (e.g., dog and doggie),
but such examples are few and are systematically disadvantaged by their model. In addi-

tion, their model is optimized to learn from a particular corpus of monolingual child-

directed speech (videos me06 and di03 of the Rollins data in CHILDES; MacWhinney,

2000), which allows the model to be optimized for a single parsimony parameter control-

ling the level of bias against large lexicons. It remains unclear how this optimization pro-

cess may impact the Intentional Model’s application to a different monolingual corpus or

whether the procedure can be generalized to bilingual input.

1.3. The present study

Bayesian word learning models have so far remained confined to the domain of mono-

lingual acquisition. Despite the limited success of such models, including the Intentional

Model, in accounting for mutual exclusivity, Bayesian word learning models have thus

far not considered how these constraints might be applied in bilingual language environ-

ments. How does the Bayesian learning framework such as that of Frank et al. (2009)
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generalize to these language environments? What should a model look like in order to

simulate the child’s behavior in both monolingual and bilingual learning contexts?

In the simulations reported in this study, we first test the utility of the Intentional

Model of Frank et al. (2009) for new training data: (a) a new monolingual corpus, similar

to Frank et al.’s original training corpus, and (b) two bilingual input corpora, based on

translations of the original data and the new monolingual corpus, respectively, in which

the number of word types per object increases as a result of the new language. We pre-

dict that a Bayesian inference model designed with the assumption that adding new words

to the lexicon is less parsimonious than retaining an existing lexicon will perform more

poorly in the bilingual conditions than in the monolingual condition because the target

lexicon in the bilingual input condition is highly incompatible with this prior assumption.

We further investigate how bilingual learning compares with the learning of each of the

counterpart monolingual corpora, and to what extent the optimization of the parsimony

parameter (the model’s prior term) accommodates these new training sets.

Next, we propose a revised algorithm for the computation of the prior probability

through a more direct implementation of a mutual exclusivity constraint by penalizing the

number of words that are already mapped to given objects rather than penalizing the lexi-

con size as a whole (the latter of which was adopted in Frank et al., 2009). We investigate

how optimization of the two models’ parsimony parameters accommodates these new

training sets. We ask how the demands of word learning are best met across diverse cir-

cumstances; specifically, whether a single unique optimization may satisfy all of the above

conditions, or whether different input environments require different parameter adaptations

in the learning algorithm for each condition. Finally, we evaluate these possibilities and

each model’s performance under different conditions against known empirical evidence.

2. Experiment 1

2.1. Model and training

The Intentional Model learns word–object mappings based on corpora of child-directed

speech and object presentations transcribed from parent–infant interactions in a labora-

tory. The specifics of the model can be found in its original presentation in Frank et al.

(2009), but for clarity and completeness, we summarize the basics of the model here. The

model repeatedly generates hypotheses for lexicons by proposing incremental changes

(i.e., adding, removing, or swapping word–object mappings), which are subsequently

scored according to their posterior probability. The posterior probability for each lexicon

is computed according to Bayes’ rule by multiplying the prior and likelihood probabili-

ties: p(L|C) / p(L) 9 p(C|L). The lexicon space is searched using a simulated tempering

strategy whereby a number of searches with differing degrees of greediness are run in

parallel. The model’s search and scoring process proceeds for 50,000 moves, Frank and

colleagues’ upper estimate for the number of moves required for the model to converge

on a solution (2009, supplemental materials).
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The prior probability for a lexicon is calculated according to a parsimony assumption,

awarding each lexicon Li a score inversely proportional to its size (number of mappings):

pðLiÞ / e�ajLij ð2Þ

The parsimony parameter a controls the degree to which the model biases lexicons

toward smaller total sizes. The value for this parameter (a = 7) was selected by Frank

et al. to produce optimal performance on their training corpus. We retain that value in

Experiment 1, applying it to both the original corpus and a new corpus.

The likelihood function, which calculates the probability p(C|Li) of observing the corpus

C of situations given a lexicon, is based on a number of interdependencies and assump-

tions. These assumptions include the following: (a) For the objects Os, intentions Is, and
words Ws in each situation S, Is is a subset of Os, and every subset is equally likely to be

intentionally referred to, that is, p(Is|Os) / 1; (b) given Is, a speaker’s utterance Ws

depends upon both Is and the lexicon L; (c) speakers have a certain probability c of using

a word referentially in any given context. In addition to these assumptions, we consider

two distinct probabilities: first, the probability pR(w|o, Li) of choosing a word w � Ws uni-

formly at random from the set of valid labels to refer to a given object o � Os with lexicon

Li, and second, the probability pNR(w|Li) of choosing a word to be used non-referentially.

A parameter j dictates how likely words in the lexicon are to be used non-referentially rel-

ative to words outside the lexicon (i.e., because we choose j < 1, words in the lexicon are

less likely to be used non-referentially). The Intentional Model’s parameters c and j are

set to the maximum a posteriori values estimated by Frank et al. (2009; that is, 0.1 and

0.05, respectively), which we do not expect to greatly differ across languages or new (but

similarly structured) corpora. The final likelihood probability is thus defined:

pðCjLiÞ ¼ PS�CRIS�OS
PW�WS

c � Ro�IS

1

jISj pRðWjO;LiÞ þ ð1� cÞ � pNRðW jLiÞ
� �

ð3Þ

After training, the model is scored both on the accuracy of its lexicon and on the accu-

racy of the inferences it makes about speakers’ referential intentions given this lexicon.

These scores are measured relative to a gold standard lexicon and intention set generated

by a human coder. The gold standard lexicon includes every noun (including plurals and

baby talk, excluding pronouns) used to refer to an object at least once in the data. The

gold standard intents were based on the speakers’ referents in Fernald and Morikawa’s

(1993) videos of mother–child interaction (see Frank, Tenenbaum, & Fernald, 2013, for

further details about coding). The measures of accuracy used were precision (proportion

of mappings made that were correct), recall (proportion of the total gold standard map-

pings that were found), and F score (the harmonic mean of precision and recall, com-

monly used as a standard measure of a model’s degree of accuracy). F scores were

calculated for both the lexicon (mappings of words to objects) and the intents (selection

of referent objects for each situation).
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Finally, we also compared the Intentional Model to the IBM Machine Translation

Model I (Brown, Della Pietra, Della Pietra, & Mercer, 1993). This model provided the

best performance among the associative probability-based approaches used for compar-

ison in Frank et al.’s (2009) analysis. The Translation Model computes association proba-

bilities both for objects given words and for words given objects. After calculating a

word-by-object matrix of association values, the model compares a number of lexicons

created at different probability threshold values, retaining only word–object pairs with an

association higher than the threshold. The lexicon resulting from the threshold value that

yielded the highest posterior score was kept for each model.

2.2. Material

In the present experiment, the Intentional Model was tested on four different datasets,

two monolingual corpora and two bilingual translations of the same corpora. The first

training corpus, drawn directly from Frank et al.’s (2009) study, was entirely in English.

To create the corresponding bilingual corpus, a native speaker of Spanish translated

approximately 50% of the situations in the monolingual corpus into Spanish, recreating

the child-directed style of speech that characterized the English utterances and providing

a roughly balanced input of English and Spanish situations to simulate the bilingual envi-

ronment. Transparency (i.e., the translation’s Spanish native-likeness) was prioritized over

fidelity (i.e., the extent to which the translation exactly renders the meaning of the Eng-

lish) whenever possible. Besides language differences, the resulting bilingual corpus is

similar to the monolingual corpus, as illustrated in Table 1. The most important differ-

ence between the corpora is the larger number of word types in the bilingual input, a

result that is expected from the use of two languages and by extension the regular use of

at least two different word types to indicate the same object.

A second monolingual dataset was generated by drawing from an additional set of

annotated transcriptions of English-speaking mothers interacting with their infants from

Table 1

Statistics describing each corpus

Corpus 1

Monolingual

Corpus 1

Bilingual

Corpus 2

Monolingual

Corpus 2

Bilingual

Corpus information

Object types 22 22 22 22

Word types 419 629 321 486

Mean objects/situation 2.04 2.04 2.93 2.93

Total situations 619 619 571 571

Gold standard lexicon

No. of mappings 34 50 34 49

Mean words per object 1.94 2.88 1.57 2.29

Note. Corpus information includes type counts for words and objects in the corpora. Each corpus also has

a gold standard lexicon, against which lexicons learned by the model are compared.
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Fernald and Morikawa (1993); these transcriptions are similar to the transcriptions used

to generate the first monolingual corpus, providing a second set of training data compara-

ble in size although having a slight increase in the number of objects for each situation

(M = 2.93 objects/situation). The bilingual version of this corpus was generated by the

same method as the previous corpus, which involved a random selection and translation

of approximately 50% of the monolingual input (see Table 1 for details).

2.3. Results

The Intentional Model was run for 50,000 iterations in each condition to yield five

estimated lexicons from the simulated tempering process. Per the procedure of Frank

et al. (2009), the best lexicon was selected among these five to represent the outcome in

each condition. For each model, we generated F scores for Lexicon (word–object map-

pings) and Intents (inference about the referent, if any, in each situation) based on both

the precision and recall for each measure. Additionally, we report the model’s complete

lexicon (set of mappings) in each condition.

Comparing across the two monolingual corpora, the model performed better in Corpus

1, for which its learning parameters were previously optimized. Despite producing simi-

larly sized lexicons for both corpora (Corpus 1: 24 mappings, Corpus 2: 25 mappings),

the Lexicon and Intents were much less accurate for Corpus 2 (see Table 2). The Inten-

tional Model’s performance sharply declined with bilingual input, with an F score

decrease of 0.17 relative to monolingual input in Corpus 1 and a 0.13 decrease in Corpus

2. Correspondingly, the intentional inference (Intents) also decreased slightly (Corpus 1:

0.13, Corpus 2: 0.10) between the monolingual and bilingual versions of the corpus.

The Intentional Model outperformed the Translation Model in Lexicon accuracy for all

corpora. In the two bilingual corpora, the Translation Model yielded higher scores for its

Table 2

F scores and lexicon size achieved by Intentional Model and Translation Model in each condition.

Corpus Language Model Lexicon (F) Intents (F) Lexicon Size

Corpus 1 Monolingual Bayes 0.48 0.55 24

Translation (w|o) 0.11 0.46 167

Translation (o|w) 0.10 0.45 103

Bilingual Bayes 0.31 0.42 20

Translation (w|o) 0.10 0.39 107

Translation (o|w) 0.09 0.53 584

Corpus 2 Monolingual Bayes 0.34 0.31 25

Translation (w|o) 0.17 0.30 14

Translation (o|w) 0.07 0.25 492

Bilingual Bayes 0.21 0.21 27

Translation (w|o) 0.14 0.36 65

Translation (o|w) 0.07 0.18 285

Note. F scores are the harmonic mean of precision and recall. Max F scores in each condition are marked

in bold.
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inferences about speakers’ referential intentions (Intents). The translation Model’s lexi-

cons were much larger than the Intentional Model’s lexicons in almost all circumstances.

In one exception, for the monolingual version of Corpus 2, the Translation (w|o) lexicon
was considerably smaller (14 mappings vs. 25); however, this small lexicon also pro-

duced far lower performance in both Lexicon and Intents (see Table 2).

In the Appendix, we report the Intentional Model’s best lexicon from each condition to

illustrate its ability to associate names provided in the input with the presented objects.

The lexicons include correct mappings (such as “bunnies” and the object bunny), situa-
tionally related (but rated as incorrect) mappings (e.g., “red” and truck), and spurious

mappings (e.g., “ruff” and pig). In general, models in the monolingual corpora produced

many more correct mappings than models in the bilingual corpora. With bilingual input,

the model learned words in each language, although it tended to learn either an English

or a Spanish name for an object but rarely both.

2.4. Discussion

Experiment 1 demonstrated that the Intentional Model, as proposed by Frank et al.

(2009), performed better overall than a competing associative model on three new cor-

pora. This advantage supports the overall usefulness of the Bayesian inference approach

to understanding lexical learning in young children. However, the large performance defi-

cits for the new corpora relative to the original corpus (Corpus 1 Monolingual) suggest

room for improvement in simulating real child learners.

The high performance achieved by the Intentional Model on its original training corpus

was considerably reduced when faced with another monolingual (and very similar) cor-

pus. Corpus 2 mapped a similar number of words and objects as Corpus 1, learned across

a similar number of situations. Critically, the model’s high performance in Corpus 1 was,

in part, due to the maximum a posteriori optimization of its training parameters, which

we expected to readily generalize to a new, similar corpus. The parameters c and j
describe more general properties of the language input (likelihood of null references and

likelihood of referential expressions, respectively) and thus seem unlikely causes of the

differences between conditions. However, the parsimony parameter a is more directly

linked to the differences between the training corpora, which differed in the number of

words assigned per object. We explore this issue further below.

Two differences between these monolingual corpora may have contributed to a change

in performance. First, in each situation, Corpus 2 presented more objects on average

(Corpus 1: 2.04 objects/situation, Corpus 2: 2.93), marginally increasing the difficulty of

the intentional inference and thus the word–object mapping. Second, the gold standard

lexicon for Corpus 2 Monolingual mapped fewer words to each unique object (1.57

words/object) than Corpus 1 Monolingual (1.94 words/object). In this case, the Intentional

Model’s parsimony bias may not have been strict enough to optimize learning of Corpus

2. This difference highlights a potential weakness of the Intentional Model. Specifically,

the model’s performance might rely on optimizing the value of the parsimony parameter,
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even between two very similar corpora of child-directed speech. We explore this issue in

the next experiment.

Comparing the bilingual to monolingual versions of each corpus, the Intentional Model

did not appear to overcome its parsimony constraints to learn the larger bilingual lexi-

cons. The bilingual and monolingual lexicons learned by the model were similar in size,

yielding far worse performance for bilingual lexical learning. This result is consistent

with our prediction that bilingual input would systematically violate the model’s prefer-

ence for smaller lexicons and severely curb the addition of new words from each lan-

guage. One possible explanation is that the bilingual corpora specifically challenged the

model by presenting increased number of word types overall, thereby reducing the co-

occurrence frequency between any given word–object pair. However, the model also did

not distribute the mapped words (in either language) across objects as widely as it did for

the monolingual corpora. Of the 18 objects in Corpus 2 Bilingual, five had multiple map-

pings, but none representing translation equivalents. Thus, on the one hand, the model

was restricted by parsimony in its learning of two languages, but on the other hand, this

parsimony did not prevent the model from making multiple spurious mappings to the

same object instead of distributing words across the objects.

These results bring into focus the Intentional Model’s specific mechanism for measur-

ing parsimony in its estimate of prior probability. The formula for computing the prior

probability of any given lexicon (see Eq. 2 above) relies on that lexicon’s total size in

mappings, not the number of names any given object is assigned. By this method, a lexi-

con that adds three new names for the same object has an equal prior probability to a lex-

icon that adds one new name for each of three objects. This constraint, as it is

implemented in the current Intentional Model, differs considerably from the mutual exclu-

sivity constraint as proposed by Markman (1990, 1994) or its Bayesian implementation

proposed by Tenenbaum and Xu (2000). However, while the current prior does not

explicitly bias proposed lexicons toward one-to-one word–object mappings, the model

strongly prefers one-to-one mappings and displays mutual exclusivity-like behavior when

the model is applied to naturalistic input (Frank et al., 2009). Thus, the Intentional Mod-

el’s approach has the advantage of simplicity, and when it is applied to a corpus that

favors one-to-one word–object mappings it indeed succeeds in simulating the experimen-

tal results of a mutual exclusivity task. However, given bilingual input, learning new

names for a given object and learning a name for a new object is an important distinc-

tion, and the Intentional Model offers no apparent means of adapting to this type of input.

It is an empirical question whether the model can ever accommodate these violations,

which the next experiment explores.

In Experiment 2, we address two questions: How does the Intentional Model’s lexical

learning improve when the parsimony parameter (a) is freed to optimize for a given cor-

pus, and how could a different approach to parsimony better accommodate both monolin-

gual and bilingual input. To this end, we propose and test a direct implementation of the

mutual exclusivity constraint in a revised model. Simulations in Experiment 2 search the

parsimony parameter space of the Intentional Model and this revised model side-by-side.

We ask whether a mutual exclusivity term (hereafter, the ME parameter) proves more
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robust to variation across training corpora than the Intentional Model’s analogous parame-

ter (a).

3. Experiment 2

Given the limitations of the Intentional Model’s lexical learning in Experiment 1, we

hypothesized that adjusting the parsimony parameter for the Intentional Model may

improve its performance for another monolingual lexicon. Can the Intentional Model be

optimized for a bilingual corpus? Learning translation-equivalent words for objects might

require drastically reducing the model’s parsimony, or this task could be outside the mod-

el’s capability at any degree of parsimony. If the latter case proves true, a revised model

that changes the calculation of the prior probability might better accommodate input from

either monolingual or bilingual environments.

The revised model described below attempts one such approach: We shift the focus of

parsimony from minimizing the size of the lexicon to minimizing the number of words

that are mapped to the same object. This new method computes the prior probability of a

lexicon as inversely proportional to the average number of words mapped to each object.

In this way, the model does not penalize the lexicon for mapping a new word to any

new, unnamed object. When adding names to objects that have already been mapped to

another name in the lexicon, mapping the word to an object with the fewest number of

names already maximizes the prior probability. While this constraint still disadvantages

learning of translation-equivalent words, it may be a more reasonable representation of

the prior assumption children must overcome to learn two languages. We expect this

approach to more equitably distribute words over objects rather than learning several spu-

rious names for relatively few objects, particularly when the model is making inferences

from noisier data (i.e., fewer co-occurrences per mapping). This reduction in spurious

mappings indirectly supports learning alternate correct names for objects, which were pre-

viously rejected due to an over-conservative preference for minimizing lexicon size.

While we search for the values of the free-parameter a that maximize the Intentional

Model’s performance for all four lexicons, we also search the values of the new mutual

exclusivity parameter in the revised model to explore its effect on learning.

3.1. Model and training

In the Intentional Model, prior probabilities are inversely proportional to the size of

the lexicon, such that lexicons with a large number of word–object pairings are penalized

with lower prior probabilities, regardless of the distribution of words per object. As illus-

trated by the results of Experiment 1, this was found to be problematic for learning cor-

pora other than the original corpus for which the model was optimized: with only a

modest change between the monolingual corpora, the model’s performance scores

dropped significantly, and the best lexicons for bilingual corpora were constrained to the
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same size as those of the monolingual lexicons, despite the bilingual lexicon’s need to

map a greater number of words to each object.

In the revised model, hereafter the ME Model, we compute the prior probability as

inversely proportional to the ratio of the number of words in the lexicon and the number

of objects named in the lexicon, or the average words per object in the lexicon:

pðLiÞ / e�ða�LÞ�ME�ðjwordsj=jobjectsjÞ ð4Þ

Under this revised definition, L is a constant defined by the size of the gold standard

lexicon for Corpus 1 Monolingual (L = 34), hence the absence of iteration (formerly Li)
in the new exponential term. This constant makes no assumption about the learner’s met-

alinguistic knowledge about lexicon size, but instead it is set to allow comparison

between the Intentional Model described in Experiment 1 and the present ME Model.

Thus, when a is held at 7 (as in Experiment 1) and ME is set to 1, the prior for a lexicon

with only one-to-one mappings will be weighted exactly the same as a target (gold stan-

dard) lexicon for Corpus 1 Monolingual. However, adding and subtracting new mappings

will affect the prior differently than the Intentional Model, giving the ME Model a prior

bias toward lower word-to-object ratios.

When the number of words in the lexicon matches or exceeds the number of objects,

the ME Model does not penalize the lexicon for adding any new, unnamed object but

rewards it by decreasing the mean labels per object overall. This behavior contrasts with

the Intentional Model in which the addition of new mappings, even correct ones, was

penalized. As a consequence of minimizing the word-to-object ratio, in situations where

the number of objects in a proposed lexicon exceeds the number of words, the ME Model

penalizes the addition of new one-to-one mappings (which would increase the word-to-

object ratio); however, this tendency is mitigated by the phCjLii term, which weighs the

fitness of the proposed lexicon to the corpus (i.e., the probability of observing the corpus,

given the lexicon). Decreasing the value of ME allows the word–object ratio to increase.

That is, a greater number of words may be mapped to each object with the same prior

probability as the one-to-one lexicon would be assigned under ME = 1. In this way, the

model can appropriately shift its prior weighting to bias lexicons in different language

input environments.

Setting the reference of a = 7 for comparison to ME = 1 allows us to compare the

analogous parameter spaces for a and ME by looking at the effects from relative changes

in each parameter. In this experiment, we search multiples up to two times (a = 14,

ME = 2) each parameter. An iteration of each model was run for multiples of 0.05 from

0.05 to 2. For the Intentional Model, this yielded values of a from 0.35 to 14. For sim-

plicity, Lexicon F scores for each model are plotted over the space of 0 to 2, allowing

direct comparison for analogous levels of parsimony (e.g., a = 6.30, ME = 0.90).

We predicted that the ME Model would produce improvements over the Intentional

Model when generalizing to new corpora by specifically penalizing multiple words per

object mappings instead of new mappings added to the lexicon. However, we did not
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know whether learning in the bilingual corpora would improve in the ME Model, given

the ME Model’s preference for one-to-one mappings. The search of a and ME parameter

spaces allowed us to explore the relationship between each model’s parsimony bias and

learning of various types of input.

3.2. Material

The same corpora from Experiment 1 were used in Experiment 2, and performance

was again assessed using the F score (harmonic mean between precision and recall) for

Lexicon and Intents.

3.3. Results

Table 3 describes the Intentional and ME Models’ respective performance at levels of

parsimony analogous to Experiment 1. Overall the two models were quite similar when

parsimony is held constant (a = 7, ME = 1). In Corpus 1 Monolingual, the Intentional

Model’s lexicon scored considerably better than the ME Model’s lexicon (Intentional

Model: F = 0.48, ME Model: F = 0.43), but intentional inference was equally accurate in

the two models (F = 0.55). In Corpus 1 Bilingual and both version of Corpus 2, the two

models performed almost identically for this level of parsimony, producing similarly

sized and similarly accurate lexicons.

3.3.1. Optimized performance
In Experiment 1, we speculated that the performance deficits of the Intentional Model

for new input might be attributable to non-optimal parsimony, which had been set accord-

ing to Corpus 1 Monolingual. In this experiment, we searched a wide range of values for

the parsimony parameter in each model, ranging from 5% (0.05) to 200% (2.00) of the

Experiment 1 baseline value. Table 4 describes each model’s best Lexicon F scores over

the entire search space for the a and ME parameters and the multiple of the baseline

Table 3

Mean F scores and lexicon size achieved by Intentional Model (Int.) and ME Model when respective parsi-

mony parameters are held at analogous Experiment 1 level (a = 7, ME = 1)

Corpus Language Model Lexicon (F) Intents (F) Lexicon Size

Corpus 1 Monolingual Int. 0.48 0.55 24

ME 0.43 0.55 26

Bilingual Int. 0.31 0.42 20

ME 0.29 0.42 25

Corpus 2 Monolingual Int. 0.34 0.31 25

ME 0.33 0.30 26

Bilingual Int. 0.21 0.21 27

ME 0.24 0.22 26

B. D. Zinszer et al. / Cognitive Science (2017) 13



parameter value at which the best performance occurred. As in the previous analysis

where parsimony was held constant, the Intentional Model’s best performance slightly

exceeded the ME Model for the original corpus (Corpus 1 Monolingual: Intentional

Model Lexicon F = 0.47, ME Model Lexicon F = 0.44). However, when the optimal

level of parsimony is selected for each model and each corpus, the ME Model’s lexicons

outperformed the Intentional Model’s lexicons in three out of four corpora.

3.3.2. Performance across the parsimony parameter space
F scores yielded by the foregoing search present one important weakness: Very similar

values of the parsimony parameter can produce highly variable results, especially as illus-

trated in Fig. 1C. Thus, the results of the search for an optimal parsimony parameter are

likely to depend on other variations in models’ performance, not attributable to the speci-

fic value of the parsimony parameter. By looking at the overall trend across the parameter

space, we can make a more stable estimate of model performance at varying levels of

parsimony. Fig. 1 depicts the observed Lexicon F scores for each model for the four cor-

pora and the lowess-smoothed (kernel size = 4) trend lines describing these performance

data. The values along this curve estimate the model’s expected performance at a given

parameter value. As in the observed F scores, the ME Model’s smoothed estimates

exceeded the Intentional Model on all corpora except Corpus 1 Monolingual. Table 5 lists

the best estimated Lexicon F scores for each model and the parameter values at which

they occurred. The F scores of the intents corresponding to each best lexicon are also

listed, reflecting strong agreement between these two metrics.

We also asked how dependent each model was on finding this optimized value of the

parsimony parameter for maximizing performance. The area under a lowess-smoothed

curve measures that model’s overall accuracy across all values in the search space. For

example, a model that achieves a high F score at the optimal parameter setting but shows

very poor performance at all other values of the parameter will have a smaller area under

the curve than a model with moderately high performance at all values of the parameter.

This pattern is evident in Fig. 1A, where the Intentional Model’s best lexicons (around

a 9 0.80 to a 9 1.30) are slightly better than the ME Model’s best lexicons. However,

Table 4

Mean F scores and lexicon size achieved by Intentional Model (Int.) and ME Model at their optimized levels

of parsimony within the space of 0.05–2 times baseline (a = 7, ME = 1)

Corpus Language Model Parameter Lexicon (F) Intents (F) Lexicon Size

Corpus 1 Monolingual Int. a 9 0.90 0.47 0.58 32

ME ME 9 0.80 0.44 0.55 29

Bilingual Int. a 9 1.20 0.33 0.42 17

ME ME 9 0.60 0.37 0.47 32

Corpus 2 Monolingual Int. a 9 0.80 0.41 0.35 34

ME ME 9 1.10 0.47 0.36 25

Bilingual Int. a 9 0.50 0.28 0.30 65

ME ME 9 0.40 0.30 0.26 27
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across the full range, the ME Model produces better lexicons overall (area = 0.70 vs.

Intentional Model area = 0.61). This difference is further illustrated by the relatively con-

stant performance of the ME Model from 0.50 to 2.0, while the Intentional Model has a

clear maximum and tails with relatively low F scores.

3.4. Discussion

The ME Model we propose in this experiment displayed qualitatively similar perfor-

mance to Frank et al.’s (2009) Intentional Model when held to a level of parsimony anal-

ogous to Experiment 1. The ME Model’s revised prior probability formula is still

Fig. 1. F scores for the best lexicons produced by the Intentional and ME Models. Analogous parsimony val-

ues for each model are plotted together, where ME = 1 yields the same constraint as a = 7, and values along

the horizontal axis are multiples of these parameters. For each input corpus, the best observed F score is

highlighted in red. Smoothed performance curves are depicted as continuous lines. Upper panels describe

models’ performance on Corpus 1 Monolingual (A) and Bilingual (B). Lower panels describe performance on

Corpus 2 Monolingual (C) and Bilingual (D).
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relatively conservative with regard to the mapping of multiple words to a given object,

especially since the baseline parsimony parameter value was chosen for learning a mono-

lingual corpus. The general similarity of results from each model reflects the choice of a
and L to roughly match Experiment 1. This baseline test establishes the viability of

applying parsimony at the mapping level rather than the whole lexicon level without sev-

ere detriment to model performance.

The ME Model’s reliance on a preference for one-to-one mappings seems counterpro-

ductive to bilingual learning, but we reasoned that overcoming a prior bias to add one

new name to each object based on specific evidence from the training corpus was a mar-

ginally smaller hurdle than overcoming a prior bias against adding twice as many words.

Given the chance to adjust the ME parameter to the best level of constraint (as in the

Intentional Model’s optimization of a), the ME Model’s learning of many-to-one word-

to-object mappings can be improved in the bilingual corpora without losing its preference

for new mappings to unnamed objects.

This experiment’s results show that the ME Model yields better lexical learning than the

Intentional Model across multiple levels of parsimony and when independently optimized.

The gap between Corpus 1 Monolingual and Corpus 2 Monolingual narrowed with the ME

Model for both the baseline parsimony (ME = 1) and the optimized values, signaling better

generalization than the Intentional Model to new input. The ME Model’s advantages for

generalization were also evidenced by the overall results of the parameter space search.

Across the search space for parsimony, the ME Model outperformed the Intentional Model

for most parameter values. This finding confirms that our revised approach to parsimony

generalizes to new language environments better than the Intentional Model, with or with-

out adjustment of parsimony. Thus, when optimization is imperfect, not possible, or simply

not an ecologically valid assumption about the learner, the ME Model is likely to produce

better lexical learning for new data than the Intentional Model.

The search for the ME Model’s optimal parsimony parameters for each corpus also

confirmed our hypothesis that lexical learning was greatest with a weakened mutual

Table 5

Lexicon and corresponding intents F scores as well as area under the lexicon curve estimated for the Inten-

tional Model (Int.) and ME Model based on the lowess-smoothed performance within the space of 0.05–2
times baseline (a = 7, ME = 1)

Corpus Language Model Parameter Lexicon (F) Intents (F) Area

Corpus 1 Monolingual Int. a 9 0.95 0.47 0.55 0.61

ME ME 9 0.70 0.44 0.54 0.70

Bilingual Int. a 9 1.10 0.32 0.41 0.46

ME ME 9 0.50 0.34 0.48 0.50

Corpus 2 Monolingual Int. a 9 0.85 0.37 0.33 0.45

ME ME 9 0.85 0.40 0.29 0.66

Bilingual Int. a 9 0.85 0.26 0.27 0.36

ME ME 9 0.40 0.27 0.26 0.47
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exclusivity bias (especially under bilingual conditions) and that simulated learners in dif-

ferent word learning environments are best served by different degrees of this bias. Most

strikingly, the values of the ME parameter that maximized Lexicon scores were mainly

modulated by the number of languages (Bilingual: 0.50 and 0.40, Monolingual: 0.70 and

0.85), while the Intentional Model’s optimal values of a were more closely related to the

source corpus regardless of the language (Corpus 1: 0.95 and 1.10, Corpus 2: 0.85 and

0.85). In other words, a weaker mutual exclusivity bias (ME) best served lexical learning

in all conditions, and decreased with the number of mappings to be learned, but the best

lexicon size bias (a) depended on specific characteristics of the training corpora. Our sim-

ulation of mutual exclusivity bias is also consistent with the current behavioral literature

and further explored in the General Discussion.

Interpretability is an important consideration for the ME Model, which could be

improved upon in future research. Given the interpretive advantages of using valid gener-

ative models, additional work may focus on re-characterizing the ME Model’s revised

penalty prior along the lines of Johnson, Demuth, Frank, and Jones (2010) and Johnson,

Demuth, and Frank’s (2012) topic models to provide a generative, probabilistic interpreta-

tion for such penalties in bilingual acquisition.

4. General discussion

In this study, we set out to test the applicability of a Bayesian model of word learning

to new language learning conditions, especially considering the large population of chil-

dren who acquire two or more languages from infancy. For this evaluation, we used the

Intentional Model of Frank et al. (2009) as a starting point because it has previously

demonstrated significant advantages over several associative models and successfully sim-

ulated a number of empirical phenomena from early word learning in childhood. In addi-

tion to the training data used by Frank et al., we provided the model with two new

learning conditions: (a) new monolingual input with similar characteristics to the Inten-

tional Model’s original training corpus and (b) bilingual input, in which approximately

half of all training situations were in English and half in Spanish, roughly simulating the

type of input a child would receive in a bilingual household. Both of these challenges

improve the ecological validity by simulating variations in natural language environments

faced by monolingual and bilingual children. We compared word learning (Lexicon) and

referential intention (Intents) in the Intentional Model for all four corpora, and we intro-

duced a revised version of the model (the ME Model), which improved lexical learning

in three of the four conditions.

Experiment 1 revealed that a modest change to the Intentional Model’s training data

had seriously detrimental effects on the model’s accuracy. When learning from the new

monolingual corpus with slightly less information about correct mappings (more objects

per situation, fewer presentations of each mapping), the model’s Intents score dropped by

nearly half. The Lexicon score also decreased by almost one-third, showing that this form

of ambiguity seriously reduced the Intentional Model’s ability to build accurate mappings
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between word types and objects. However, in comparison to the associative models (see

Table 3), the Intentional Model still produced smaller, more parsimonious lexicons in

both Monolingual conditions. The Bilingual versions of both corpora also yielded much

lower scores than the Monolingual condition, particularly in the Lexicon test, but as in

the Monolingual condition, the Intentional Model outperformed the IBM model on both

the Lexicon F score and the relative parsimony of the best lexicon size. Thus, the general

utility of a Bayesian approach to lexical learning is validated in Experiment 1.

Subsequently, in Experiment 2, we sought to leverage the success of the Intentional

Model’s Bayesian architecture in a revised model that more explicitly implemented chil-

dren’s mutual exclusivity (ME) biases, based on the important role that ME plays in early

word learning (Markman, 1994). The ME Model’s new prior probability term shifted

focus from total lexicon size to the average number of mappings per object in the lexi-

con. When we compared the ME Model’s performance to the Intentional Model using the

same set of input corpora and a prior probability (as set by the ME parameter) roughly

equivalent to that of the Intentional Model, the ME Model showed relatively little differ-

ence from the Intentional Model. The principal difference between the ME Model and

Intentional Model, however, was the potentially unique effect of adjusting each model’s

parsimony parameter, a manipulation we addressed by searching the parameter spaces for

each model in parallel. In this search, Experiment 2 also revealed an overall advantage

for the ME Model in lexical learning and an ecologically plausible relationship between

the optimal conservatism of the mutual exclusivity bias and the corpora variations that

were generated for the preceding experiment. The results of Experiment 2 highlight the

sensitivity of Bayesian models to the parsimony assumption, and demonstrate the flexibil-

ity of the ME Model to adapt to varying language environments.

The findings outlined thus far provide insights into several important directions: (a) the

constraints which are thought to optimize models of monolingual learning may not

directly generalize to all language environments, (b) it may be possible to successfully

simulate both monolingual and bilingual developmental trajectories with a single model

when performance data for each type of input are considered and balanced, and (c) an

adequate model of language learning requires prior assumptions that are resilient to dif-

fering demands of variable language environments. In what follows, we provide an analy-

sis of the Intentional and ME Models’ performance across the four corpora against the

extant empirical literature on early word learning.

One ostensible contributor to the performance of the Intentional and ME Models in the

Bilingual conditions was the decreased number of exposures for every word–object map-

ping: Having a greater number of word types to map per object, each word type was

matched with its respective object less frequently than in the Monolingual conditions.

Although finding the optimal ME parameter produced a considerable improvement over

the baseline parsimony in Corpus 1 Bilingual, even the best Lexicon performance in this

condition (F score around 0.34) was considerably lower than achieved in the analogous

Monolingual corpus. Optimizing the ME parameter for bilingual learning did not erase

the bilingual deficit in either corpus, indicating that the model was not able to learn as

quickly with approximately half the amount of input per language.
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The effect of reduced input (per language) in the ME Model is commensurate with cur-

rent views of frequency effects in bilingualism. The Frequency-Lag Hypothesis (Gollan,

Montoya, Cera, & Sandoval, 2008) proposes that splitting a lifetime of language input

between two languages results in lower subjective frequency of words for bilinguals relative

to monolinguals, as evidenced by bilinguals’ significant deficits in picture naming speed for

low-frequency words relative to their monolingual counterparts. In the shorter term, bilin-

gual children’s receptive vocabularies, indeed, lag relative to their monolingual counterparts

(Bialystok, Luk, Peets, & Yang, 2010), possibly attributable to relative deficits in input fre-

quency. However, both of these effects are described in developmental terms, looking at

cumulative learning over several months or years. The present simulation uses only several

hundred utterances and a limited subset of potential referent objects to train the models, rep-

resenting mere hours of parent–child interaction. One remaining question is the extent to

which the short-term inferential deficits exhibited by the model would reflect longer term

developmental outcomes, given a greater amount of training material. At this stage, our pre-

diction based on the model is that in an experimental paradigm using a comparable training

period of about six hundred referential utterances, children who receive bilingual input

would acquire many fewer new words than their monolingual counterparts.

Numerous empirical studies have demonstrated the important role a mutual exclusivity

bias plays in monolingual language acquisition (e.g., Halberda, 2003; Liittschwager &

Markman, 1994; Markman & Wachtel, 1988; Markman, Wasow, & Hansen, 2003); how-

ever, most computational models have skirted this problem by limiting training data to one-

to-one word–object pairs or producing large, unnaturalistic lexicons (see Frank et al., 2009,

for a comparison of the Intentional Model against other major word learning models).

By varying the ME parameter, we demonstrated that the ME Model’s implementation

of bias at the level of words mapped per object makes better use of the sparse input than

the Intentional Model. Thus, despite the reduced co-occurrence frequencies of word–
object pairs in the Bilingual input and the increased number of competitor objects in Cor-

pus 2, an optimally adjusted value of the ME parameter exists by which lexical learning

is improved over baseline parsimony (ME = 1) and over the Intentional Model. This met-

alinguistic sensitivity to mutual exclusivity and adjustment of the bias has also been

observed in children. Between 16 and 18 months, bilingual children significantly attenu-

ate their mutual exclusivity bias compared to monolingual peers (Byers-Heinlein & Wer-

ker, 2009; Houston-Price et al., 2010), and this shift in bias appears to be predicated on

acquisition of translation equivalents between their two languages (Byers-Heinlein &

Werker, 2013). In Bayesian terms, when learning two languages results in a sufficiently

low posterior probability due to violations of mutual exclusivity (by recognizing transla-

tion equivalents), infants adjust their prior biases accordingly, loosening this constraint,

or, in the case of multilinguals, abandoning it completely (Byers-Heinlein & Werker,

2009), which raises the posterior probability for their lexicon.

We observed that in both corpora, the model showed the best performance with a bias

parameter in the prior that decreased inversely to the number of languages being learned.

The ME Model’s optimal ME parameters follow a pattern very similar to the 18-month-

old infants in Byers-Heinlein and Werker’s (2009) study. Bilingual infants’ increases in
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looking time at novel objects were only 67% that of monolingual infants (Bilingual: 0.08

increase in the proportion of looking time, Monolingual: 0.12 increase). This ratio com-

pares favorably with the degrees of bias that optimized the ME Model’s lexical learning,

wherein the best ME parameters for bilingual corpora were 50%–70% their monolingual

equivalents.

Future modeling work should focus on extending the versatility of the Bayesian frame-

work to accommodate a broader set of learning conditions and elaborating its implications

for the underlying mechanisms and processes in word learning. The present ME Model

retains the advantages of the Bayesian framework for inference and offers two novel

insights: Bilingualism is a tractable problem under this architecture, and a weakened

mutual exclusivity bias may optimize bilingual learning with only minimal loss for mono-

lingual performance. The mechanism for the occurrence and timing of this metalinguistic

awareness is, however, unspecified in the model. At present, we can only infer, based on

the modeling data obtained, that ME serves as a key modulating variable in bilingual

word learning in childhood, and children must make an additional inference about which
learning context they are in and therefore adjust the mutual exclusivity bias accordingly.

This problem of context detection has been addressed in statistical learning by Qian et al.

(2012) through a framework of hierarchical Bayesian inference. The potential application

of this hierarchical approach to word learning would involve selection of a monolingual

or bilingual context and the consequent adjustment of the prior term.

Future studies may also adapt the present architecture to offer greater insight into lon-

gitudinal development patterns. At present, the model produces only cumulative results

over whatever amount of input it is provided. A model which could leverage known (or

believed) mappings learned previously toward the interpretation of new corpora with new

mappings would offer researchers the ability to track simulated development patterns over

time, with sensitivity to longitudinal effects such as the vocabulary spurt (Goldfield &

Reznick, 1990; see Mayor & Plunkett, 2010; Li, Zhao, & MacWhinney, 2007, for exist-

ing models) or U-shaped developmental functions (Strauss, 1982).
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Table A1

Experiment 1 best lexicons for Intentional Model

Corpus 1 Corpus 2

Monolingual Bilingual Monolingual Bilingual

Word Object Word Object Word Object Word Object

Bear Bear Hand Hand The Cheese Hotdog Hotdog

Hiphop Mirror Davids Lamb Bear Bear Maza Dough

Bottle Bear Gatito Kitty Blocks Baby Rosy Rabbit

On Ring David Book Brush Box Gofres Waffles

Lamb Lamb Sombrero Hat Hair Brush A Face

Laugh Cow Hat Hat Brush Brush Brush Brush

Bunnyrabbit Bunny Sheep Sheep Red Truck Ido Book

Baby Book Bigbird Bird Waffles Waffles Ruff Pig

Birdie Duck Bunnies Mirror Alphabet Alphabet You Hotdog

Bird Duck Hiphop Mirror Ruff Pig You Face

Ring Ring Meow Baby You Face Guau Pig

Moocow Cow Bunnyrabbit Bunny The Face Esta Cheese

Kittycat Kitty Mhmm Hand The Hotdog Esta Face

Book Book Vaca Cow Hotdog Hotdog Doggy Dog

Meow Baby Bottle Bear Flashlight Flashlight Car Car

Bunnies Mirror Encontrar Cow Bang Brush Grande Bear

Hand Hand Cerdo Pig Rosy Doll You Box

Sheep Sheep Libro Book Happens Blocks Oh Face

Pig Pig Abelardo Bird The Dog Cepilla Box

Oink Pig Oink Pig Doggy Dog Bloques Blocks

Mhmm Hand Cheese Pepperoni Queso Pepperoni

Bigbird Bird Doors Car Bebe Baby

Hat Hat Rabbit Rabbit Bang Box

Put Ring Dough Dough The Alphabet

Joey Book The Dog

The Face

Incorrect mappings are shaded.
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Table A2

Experiment 2 best lexicons for ME Model

Corpus 1 Corpus 2

Monolingual Bilingual Monolingual Bilingual

Word Object Word Object Word Object Word Object

Laugh Cow Who Boy Bang Box Ruff Pig

Dada Woman Papa Woman Blocks Blocks Guau Pig

Set Face And Book Rabbit Rabbit Queso Pepperoni

Bottle Bear Sombrero Hat Doors Car Hotdog Hotdog

Bear Bear Viejito Man Dough Dough The Hotdog

Lamb Lamb Bird Duck Baby Baby Bang Brush

Sheep Sheep Bunnyrabbit Bunny Waffles Waffles Gofres Waffles

Ring Ring Hat Hat Rosy Doll Cepilla Box

Book Book Hiphop Mirror Brush Brush Brush Brush

Bunnyrabbit Mirror Bunnies Mirror Oscar Oscar Brush Box

Mommy Man Birdie Duck Red Truck Doggy Dog

Put Ring Libro Book Alphabet Alphabet The Face

On Ring On Ring The Cheese Oh Face

Baby Rattle Bigbird Bird The Face Joey Book

Looking Eyes Meow Baby Hotdog Hotdog Bebe Baby

Courtney Boy Oso Bear Flashlight Flashlight Grande Bear

Who Girl Oink Pig Bear Bear Lanterna Alphabet

Bunnies Bunny Dododo Duck The Dog You Brush

Kittycat Kitty Sister Girl Joey Book You Face

Hat Hat Mhmm Hand You Face Mu–ecita Rabbit

Moocow Cow Hand Hand You Box Manejar Truck

Hand Hand Put Ring Ruff Pig Who Doll

Mhmm Hand Bottles Face Cheese Pepperoni Oscar Oscar

Meow Baby Sheep Sheep Ernie Ernie Drop Cheese

Bigbird Bird Gatito Kitty Doggy Dog Pedazos Cheese

Pig Pig Davids Lamb Maza Dough

Oink Pig Ring Ring Mas Dough

Bird Duck Bottle Eyes Take Flashlight

Birdie Duck Encontrar Cow Pepperoni Pepperoni

Vaca Cow Algo Dog

Cerdo Pig Rosy Rabbit

Abelardo Bird Conejo Rabbit

Blocks Blocks

Rosy Doll

Oso Bear

Doors Car

Car Car

Incorrect mappings are shaded.
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